The Influence of Pedology and Changes in Soil Moisture Status on Manganese Release from Upland Catchments: Soil Core Laboratory Experiments

نویسندگان

  • A. M. Hardie
  • K. V. Heal
  • A. Lilly
چکیده

Manganese (Mn) contamination of drinking water may cause aesthetic and human health problems when concentrations exceed 50 and 500 μg l, respectively. In the UK, the majority of Mn-related drinking water supply failures originate from unpolluted upland catchments. The source of Mn is therefore soil, but the exact mechanisms by which it is mobilised into surface waters remain unknown. Elevated Mn concentrations in surface waters have been associated with the rewetting of dried upland soils and with conifer afforestation. We investigated these hypotheses in a laboratory experiment involving the drying and rewetting of intact soil cores (1,900 cm volume) of horizons of four representative soil type-land use combinations from an upland water supply catchment in southwest Scotland. Although no statistically significant effect of land use or soil type was detected on Mn concentrations in soil water, Mn release occurred from three soil horizons upon rewetting. Soil water Mn concentrations in the moorland histosol H2 (10–30 cm), the histic podzol H and Eh horizons increased from means of 5.8, 6.2 and 0.6 μg l prior to rewetting to maxima of 90, 76 and 174 μg l after rewetting, respectively. The properties of these three horizons indicate that Mn release is favoured from soil horizons containing a mixture of organic and mineral material. Mineral material provides a source of Mn, but relatively high soil organic matter content is required to facilitate mobilisation. The results can be used alongside soil information to identify catchments at risk of elevated Mn concentrations in water supplies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manganese in runoff from upland catchments: temporal patterns and controls on mobilization

Knowledge of the hydrochemical dynamics of the trace metal manganese (Mn) in upland catchments is required for water quality management. Stream water Mn and other solutes and flow were monitored in two upland catchments in northern England with different soils: one dominated by peat (HS7), the other by mineral soils (HS4). Maximum Mn concentrations occurred at different times in the two catchme...

متن کامل

Manganese and land-use in upland catchments in Scotland.

Manganese (Mn) in surface waters is a micronutrient, but elevated concentrations are toxic to fish and impair drinking water quality. In Scotland, undesirable Mn concentrations (> 0.05 mg l(-1)) occur predominantly in upland freshwaters because the acidic pH and organic nature of catchment soils favour Mn mobilisation. The relationship between upland land-use in Scotland and Mn concentrations i...

متن کامل

The efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator

1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas.  Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...

متن کامل

The Effects of Micro Catchment Runoff Harvesting System on Soil Moisture Enhancement

Rainfall harvesting and storage in soil depth through micro catchment contribute to curtail water deficiency of plants. The objective of this research that was conducted in Kaboodeh-Olya village in Kermanshah province, Iran, was to compare the effects of three different micro catchment systems on soil moisture storage including flat, crescent and rhombus shaped. The experimental research was pe...

متن کامل

Improving the clay, silt and sand of soil prediction by removing the influence of moisture on reflectance using EPO

Moisture is one of the most important factors that affects soil reflectance spectra. Time and spatial variability of soil moisture leads to reducing the capability of spectroscopy in soil properties estimation. Developing a method that could lessen the effect of moisture on soil properly prediction using spectrometry, is necessary. This paper utilises an external parameter orthogonalisation (EP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006